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Abstract:

Principal component analysis (PCA) has become a standard tool in spectromicroscopy and

hyperspectral imaging to handle large spectral data sets and to decompose raw data into

relevant and residual information. In particular in studies of complex compounds, PCA can

be used to disentangle chemical information and thereby deepen the understanding of

chemical and physical material properties. Surprisingly, in photoemission electron

spectromicroscopy (PEEM), PCA is rarely used. This paper serves to demonstrate how

powerful PCA can be to detect hidden chemical information in PEEM data. We demonstrate

the capability of PCA in PEEM spectromicroscopy for the case of a thin film of a complex

quaternary oxide, Pr0.5Ba0.5CoO3 (PBCO) which is a main contender catalyst material for

electrocatalytic water splitting. Upon annealing in air, PBCO decomposes into different

phases at the surface. Two of them become obvious from the raw PEEM images, but one is

revealed only after PCA.
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1. Introduction

Multivariate analysis (MVA) techniques such as Principal Component Analysis (PCA) [1, 2] are

very powerful statistical tools which have been used for a long time to reduce the

dimensionality of data sets and to analyze spectromicroscopic measurements [3]. PCA

decomposes spectral data into new components which represent the largest variance in the

data and into other components which form the residual [4 6]. In typical spectromicroscopic

data, relevant spectral components that make for about 95% of the variance may account

for merely 10
3
% of the total data! Therefore, relevant spectral information might be

camouflaged under the sheer amount of data with low variance and might not easily be

detected.

Given large spectral data sets, interactive analysis becomes tedious and time consuming;

even more critical: in order to handle such large data sets, artificial pre assumptions on the

possible outcome of the analysis may become inevitable. Such pre assumptions, however,

might prevent the observation of unexpected results since the latter may be filtered out in

order to handle the large data set. PCA on the other hand, being a proper ab initio method,

is for the most part free of artificial pre assumptions and safely detects all components that

explain the largest variances in raw spectral data.

Due to these benefits, statistical methods such as PCA have influenced a wide range of

scientific fields and applications [7 9]. The availability of open source as well as commercial

software packages support the broad application of PCA and cluster analysis to

spectromicroscopic and hyperspectral data [10].

Among the spectroscopy data analyzed using PCA, x ray photoelectron emission (XPEEM

[11]) work is scarce though: An early extended x ray absorption fine structure (EXAFS)
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analysis of Mo/TiO2 catalysts was described by Fay et al. in 1992 [12]. Tutorial description of

PCA applied to XAS (x ray absorption spectroscopy) and EXAFS studies were published a

couple of years later by Wasserman et al. [13, 14]. Multivariate techniques with

compositional and lateral resolution were applied to PEEM studies of Ge oxide surfaces [15

17]. Ag, Ni, Ti metallization layers [18] and Au Sn surfaces [19] were studied using PCA by

Walton et al. and Renault et al.. The latter authors used PCA exclusively to detect probably

hidden information in the XPS (x ray photoelectron spectroscopy) data; however, they did

not perform a full spectral analysis of their data using PCA [19]. In 2015, Strelcov et al.

published studies on complex oxides where they analyzed the spatial variability of electronic

transport in BiFeO3 CoFe2O4 [20]. However, these authors focused on the local electronic

transport properties rather than on the chemical aspects or phase domain studies of

complex oxides. Very recently, Yang et al. showed using PCA that praseodymium Pr
3+

accumulates in SrTiO3 grain boundaries [21]. A year later, Hannula et al. employed PCA

exclusively to reduce noise in XPS PEEM data of ultra thin TiO2 films [22]. Finally, Guo et al.

used PCA to determine the reasonable number of components that should be used in peak

fitting procedure rather than detecting relevant components directly from PCA [23].

This paper demonstrates that PCA is not restricted to serve as an accessory tool in PEEM

spectroscopy on thin solid films. On the contrary, PEEM spectromicroscopy data may be

analyzed with high precision based on PCA exclusively. As an example, we report on the

analysis of XAS PEEM images of thin Pr0.5Ba0.5CoO3 (PBCO) ordered double perovskite

compound films. PBCO is a mixed conducting oxide which, due to its electronic properties

and facile reducibility is proposed as a next generation catalyst for water splitting [24]. It

belongs to the family of late 3d transition metal (TM) perovskites known for their highly

covalent TM O bond [25 28]. This feat, also responsible for their fascinating electrochemical
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properties (which are not focus of this work though), leads to an information rich X ray

absorption spectroscopy (XAS), especially around the O K Edge. The O K XAS is a powerful

tool to assess the electronic structure in the vicinity of the Fermi level of perovskites.

Electronic states probed at the O K edge are participating in electrochemical reactions. Their

evolution during electrochemical reactions gives valuable insights into atomistic processes

[25, 29]. Unfortunately, most studies so far have been carried out in their spatially averaged

form, i.e. sample surfaces were considered to be perfectly homogenous at all times

notwithstanding thermodynamic conditions. As a consequence, local changes in chemical

surface properties based for instance on cation segregation and precipitation are either

completely overlooked or cannot be resolved properly. Cation segregation and precipitation,

however, are ubiquitous in complex oxides exposed to technologically relevant

thermodynamic conditions [30, 31] which in turn will alter the electronic structure locally

and with that the reaction mechanisms.

In the case of thin films deposited by pulsed laser deposition, as in this case, it should be

noted that due to the typically low process pressure and the involved non equilibrium

growth dynamics [32] the highly reducible oxides are usually grown in a more reduced state

than their application counterpart. As the formal oxidation states of Co as well as the

concomitantly altered oxygen vacancy concentration are governing factors of the

aforementioned applications, it is worthwhile to investigate the materials reaction to

exposure to thermodynamic conditions typical for solid state ionics and industrial processing

of the catalysts. Though alterations beyond pure oxidation and reduction (the oxygen

exchange) may be identified with spatially averaging techniques, especially the more

information rich XAS does not give clear indication of e.g. phases as XPS does [31]. Other

spatially resolving techniques such as atomic force or electron microscopy do not yield
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chemical contrast. The X PEEM approach in conjunction with sophisticated analysis

techniques as presented here yields the necessary spatial and chemical contrast required for

a thorough understanding of surface processes of complex oxides. In summary, PBCO as a

rather complex oxide film offers itself to be a quite intuitive example to demonstrate the

strength of PCA applied to PEEM data.

Here, we report on the observation of a surface decomposition of PBCO films into a Pr lean

and Ba rich, and a Ba lean and Pr rich phase after elevated temperature anneal in oxidizing

atmosphere, indicating a miscibility gap of the parent material as has been observed before

in similar complex perovskites [33]. Details of the physical and chemical implications of this

complex domain pattern in terms of proper defect chemistry and thermodynamics are

beyond the scope of this article. Here, we focus on how powerful the method can be even in

studies of complex oxides. As a further reference for the work at hand, in terms of bulk solid

state chemistry, the process can be grossly simplified to:

(1)

which showcases that the demixing of the A site being constituted of aliovalent cations (Ba
2+

and Pr
3+
) will result in a change of the overall oxidation state of Co, or better the CoO6

building block due to the rather covalent nature of the late 3d transition metal perovskites.

This, of course, neglects the occurrence of any oxygen vacancies, which however are

inconsequential for the work presented here. It should be noted, though, that in the late 3d

transition metals (TM) due to the negative charge transfer, any charge fluctuation in the

TMO6 building block is observable in the O K Edge XAS [25], as will be been seen here.
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Here, we focus on the technical aspects of the analysis of the PEEM images and the insights

gathered towards the decomposition process. We demonstrate that PCA is a fast analysis

method with high spectroscopic resolution and in contrast to manual methods not

susceptible to false assumptions during analysis.

2. Materials and Methods

2.1. Experimental

Highly oriented thin films of Pr0.5Ba0.5CoO3 (in the following denoted as PBCO) were

deposited on Nb doped SrTiO3 (100) substrates as described elsewhere [34]. Crystallinity and

formation of the cubic perovskite phase were confirmed by X ray diffraction.

The pristine thin film sample did not show any obvious surface structure. Preliminary studies

of our group indicate that the domain structure evolves with sample annealing. Results are,

however, beyond the scope of this paper and will be subject of an upcoming future

publication.

In the study presented here, the pristine sample was subjected to a 12h anneal at 1073 K in

a stagnant atmosphere of Pa O2. After annealing, it was quenched to room

temperature in the pertaining atmosphere and transferred to the microscope chamber

under UHV conditions.

PEEM data considered in this paper was collected at the NanoESCA beamline of Elettra [35],

in a UHV system with a base pressure of 5x10
9
Pa, using an electrostatic PEEM. PEEM

images have a circular field of view (FoV) with an approximate diameter of 10 µm. The total

size of the square raw image is 600 600 pixels, corresponding to a length of 18 nm per

image pixel.
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In X ray absorption spectroscopy (XAS), PEEM images display the secondary electron

emission for a distinct kinetic electron energy and the incident photon energy is scanned in

order to obtain spatially resolved X ray absorption spectra. The data set for a certain energy

range is therefore a stack of single images, each recorded at a distinct photon energy.

Spectromicroscopic images were recorded and analyzed in a spectral range between (A)

526.0 and 550.0 eV, (B) 772.0 and 809.0 eV and (C) 926.0 and 952.0 eV with an energy step

of 0.2 eV for all three regimes. The full data set therefore contained stacks including (A) 121,

(B) 185 and (C) 130 images. Regime (A) covers the oxygen K edge, (B) the Co L3,2 and the Ba

M5,4 edges and (C) the Pr M5,4 edges. The energy resolution was (A) 150 meV, (B) 230 meV

and (C) 340 meV.

For the analysis of our data we used the entire FoV (details will be presented in section 2.2).

Furthermore, we used PEEM data without any pre processing, such as normalization or

background removal applied. In order to improve visibility of image details for the reader,

images shown here, however, are sections of size 180 180 pixels and the images are

displayed with increased contrast. The section size corresponds to a sample area of 3.2 3.2

µm
2
.

Fig. 1(a) (c) show average spectra as determined for the 12 h annealed PBCO sample in all

three energy regimes (black solid lines): (a) 526.0 to 550.0 eV, corresponding to the oxygen

K edge; (b) 772.0 to 809.0 eV, corresponding to the cobalt L3,2 and barium M5,4 edges and

(c) 920.0 to 960.0 eV, corresponding to the praseodymium M5,4 edges. The solid lines in Fig.

1 were obtained by averaging the pixel intensity of all image pixels inside the circular FoV in

the image stack and plotting the mean intensity vs. the photon energy (for details see also

section 2.2). In the view graphs, spectroscopic features of each dataset prototypical for a
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perovskite are indicated: first, the eg and t2g resonances are the transitions from O1s to the

hybridized O2p/Co3d states which are split by the octahedral field (Fig. 1 (a)). Secondly, the

spin orbit split 2p to 3d and 3d to 4f resonances for Co and Ba/Pr respectively appear as

distinct peaks in the spectra in (b) and (c).

Spectra as obtained at distinct pixels in a single image of the stack may substantially deviate

from the mean spectra. As an example, we have plotted two local spectra as found at

distinct pixel positions as dotted gray and dark gray curves. Similar deviations are also found

for the other two energy ranges but are not shown in Fig. 1 (b), (c).

Fig. 1(d) shows 180 x 180 sections of the raw PEEM data for photon energies corresponding

to the typical resonant features of the XAS in the spectra (a) to (c): The O2p/Co3d eg and t2g

states (528.8 eV and 530.2 eV respectively), cobalt (780.2 eV), barium (784.0 eV) and

praseodymium (929.4 eV). The raw PEEM images of the 12h annealed sample show high

and low intensity areas at 528.8 eV and 530.2 eV. For 528.8 eV, this structure is well

resolved, whereas for 530.2 eV, the PEEM image is noisy. At 780.2 eV, no obvious structure

safely distinguishable from noise is observed. At 784.0 eV, a similar structure compared to

528.8 eV is revealed; and finally, at 929.4 eV, the PEEM image appears to have a

complementary contrast compared to 528.8 and 784.0 eV. In the first image of Fig. 1(d) we

have indicated those pixels as white cross/circle where we have measured the two local

spectra displayed in Fig. 1(a) as dark /light gray dotted curves.

From the raw PEEM images in Fig. 1 one might conclude that annealing PBCO to 1073 K for

12 h causes a severe restructuring of the surface into two domains: one with high Ba and low

Pr content, and the other vice versa, corresponding to a spinodal decomposition observed in

the bulk of similar materials [33]. The low contrast in the raw PEEM image at 780.2 eV
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indicates that cobalt is almost homogeneously distributed over the surface. However, the Co

signal is hardly above the noise level. Hence, a localization of cobalt with respect to the

visible domains is difficult if not to say impossible.

In the following we will demonstrate that PCA can not only attribute specific core level states

(including those of cobalt) to the visible domains, but rather, it is capable to identify a third

domain which is camouflaged in the raw PEEM images.

2.2. Principal Component Analysis of PEEM images

As a benefit to those readers not familiar with PCA, we briefly summarize some basics.

Principal component analysis is a multivariate procedure that uses an orthogonal

transformation to convert a set of observations of possibly correlated variables into a set of

values of linearly uncorrelated variables called principal components (PC).

Mathematically, a spectromicroscopic image of pixels is described by an intensity

matrix and the raw data set of spectromicroscopic images for energies is a matrix

stack of matrices. Spectral information is obtained from the image stack by

plotting the intensities mn k vs. the energy for a fixed distinct value pair (see

Fig. 2(a)).

Let be the total number of pixels in a particular image of the stack, i.e. , the

spectral information in the entire spectromicroscopic image stack is described by a

matrix . In order to keep the spatial information in the spectromicroscopic image

accessible, the matrix columns of must remain uniquely related to the image pixel

indices . In the matrix , the spectral frequencies are identified as the experimental

variables represented by the matrix rows (Fig. 2(b)). In the matrix columns one finds the

spectral intensities which are identified as the experimental observations. In other words,



10

the observed spectral intensities are the projections of the data on the coordinate axes in

the original space.

The PCA projects onto its PCs, i.e. it searches for orthonormal axes of a new principal

component space such that the original space axes decompose into two sets of principal

axes: one subset of few principal axes which are oriented along the direction of largest data

variances. The second subset contains the large number of remaining principal axes which

account for the residual with small data variances. The goal is to describe almost all of the

original data variances with a small subset of principal axes in order to reduce data

dimensions and separate residual information.

Mathematically, the new principal axes are the eigenvectors of the covariance matrix of .

PCA calculates new principal axes (principal components) as linear combinations of the

original coordinate axes. PCA picks the particular solution where the first PC accounts for the

largest variance; the second principal component for the second largest variance and so

forth. The principal components are hence sorted with respect to the variance, largest

comes first.

The PCA expresses as the product of two new matrices (scores) and (loadings)

(2)

The scores are the representations of the original data in the new orthogonal space of the

new principal axes, i.e. they are the coefficients of linear combinations in the space of the

PC. The loadings, on the other hand, reflect the variance along the direction of the PCs, i.e.

they show how much the component contributes to the variance of original data for a given

variable.
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Multiplication of eq. (2) by on both sides yields (with for orthonormal matrices)

(3)

If , it is sufficient to reduce the number of PCs to , and hence, the score matrix to a

square matrix. The reduction to a square matrix may considerably reduce

calculation time, in particular in the case of large pixel numbers such as the pixels

PEEM images presented here. Once the loadings matrix is known, the full original data set

is regained according to eq.(3) via transposition of and multiplication with the score matrix

.

As mentioned before, the PCA aims at the description of the experimental data by a small

number of linearly independent PCs. That is, the original, and mostly correlated data axes

are replaced by the uncorrelated PCs which account for the largest variance in the data. The

fact that the PCs are uncorrelated will be of importance when interpreting the results for the

PCs since it allows distinguishing correlated and uncorrelated chemical changes in complex

materials such as perovskites.

The difficulty in experimental data analysis is to decide how many PCs belong to the small

subset of PCs with large variance and which should be taken into account to describe the

physical and chemical information in the data. For that purpose it is inevitable to have a look

at the total variance explained by the PCs considered. The variances are the eigenvalues of

the covariance matrix of . Hence, the total variance explained (TVE) by the first j PCs is

given by:

TVE = (4)
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Typically, the value for the TVE rises strongly for the first PCs and then gradually flattens to

approach a value of 100% when all PCs are taken into account. The question remains, how

large the TVE value must be to explain the most relevant part of the data. In 1966, Cattell

developed with the Scree test a simple and straight forward procedure [36]. Here, the

eigenvalues j are plotted vs. the index j of the PC. For small j, the decrease in the eigenvalue

j is almost linear. For a certain value of j one observes an obvious kink in the data curve. All

values of j below the kink are considered to be relevant. The kink criterion leaves some room

for interpretation, in particular when there is no obvious kink as will be discussed in more

detail for the data presented in Fig. 4.

An interesting side effect of the PCA is that one may generate loading maps using individual

PCs only:

(5)

Here, the index “PC” indicates that eq. (2) is evaluated for individual PCs only.

With eq. (5), one identifies those pixels from which the information on the particular

principal component loading originated. In case of different chemical components with

clearly distinguishable spectra, image generation using individual loading intensity maps

yield therefore spatially resolved images of local chemical component concentrations.

For our analysis, we employed the standard algorithms for PCA analysis with centered data

as implemented in the Matlab statistics toolbox (version 7.11.0 R2010b, Mathworks Inc.). No

additional preprocessing was applied to the raw PEEM image data.



13

To exclude all points in the PEEM image referring to a position outside the FoV of

the PEEM, we applied a region of interest (ROI) with a radius of 567 pixels. Hence, the pixel

size of a raw PEEM image was reduced from to pixels within

the ROI. That is, principal component analysis as reported here was performed on 252448

spectra for each of the energy ranges (A) (C).

The origin of the various PCs as determined by PCA may be manifold, in particular for

complex oxides: first, different chemical elements give rise to different PCs, as employed

readily for chemical composition mapping [15]. Second, separate domains with different,

nevertheless, homogenous concentrations of one and the same chemical species will cause

separate PCs. And third, different oxidation states of a chemical element will yield different

Eigen vectors due to the sensitivity of the overall XAS shape to the local electronic structure.

Hence, care in the interpretation of the results and a basic knowledge on the particular oxide

is essential to interpret PCA results of perovskite oxides.

In the case of PBCO, we have three different energy ranges and various spectral features

serving as fingerprints for the chemical states. Furthermore, as it turns out, PCs are sensitive

to differences in chemical compounds (Co, Ba), differences in oxidation states (nominally

Co
3+
, Co

4+
) as well as concentration differences (Co, Ba, Pr).

2.3 Domain localization using orthogonal non negative matrix factorization

If samples under study reveal domain separation of chemical components on the resolution

scale of the PEEM, loading intensity maps will form gray scale images with clearly

distinguishable high and low intensity areas. In order to analyze the average spectral

intensity within certain domains, pixels that belong to the specific domain in the loading map

must be identified. An easy approach would be to choose threshold gray values to separate
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different domains. However, this procedure depends sensitively on the chosen thresholds.

Therefore, we favored another well known multivariate technique, the orthogonal non

negative matrix factorization (ortho NMF [37, 38]). Here, domains can exclusively be

identified using mathematical procedures: in ortho NMF, the data matrix at the

kth energy is factorized into non negative, orthogonal factors, a matrix and a

matrix . The dimensionality c is determined by the number of data groups, or

clusters, in the system. The factorization is quite similar to PCA; however, with the constraint

that the basis vectors as well as the coefficients must be all positive and orthogonal. The

separation of the data into specific groups (or clusters) can be performed with respect to

various criteria. Here, we classify data groups according to similar Euclidian distance from

the mean using a Matlab based code according to Andri Mirzal [38, 39].

A major drawback of the NMF compared to PCA is that NMF requires a pre assumption of

the number c of data groups to be found. Such pre assumptions, however, might introduce

artificial results; in particular, they may prevent detection of unexpected cluster groups.

Therefore, we use the ortho NMF exclusively for the localization of domains in the loading

maps detected by PCA.
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3. Experimental Results

The mean spectra as obtained from the average over all spectra in the ROI were already

presented in Fig. 1. As demonstrated in Fig. 1(a), spectra as obtained from individual pixels,

however, may deviate substantially from the mean spectrum.

These local variations in spectral information were analyzed using PCA: Fig. 3 shows the

loading intensity for the lowest five PCs. In all energy ranges (A) – (C) the loading intensity of

PC 1 resembles the mean spectrum as displayed in Fig. 1(a) – (c). The loading intensities of

PC 2 and higher account for changes in peak intensity and peak positions.

Prior to the discussion of details of these changes we have to decide which of the PCs are

sufficient to describe our experimental data. For this purpose we make use of the TVE plot

according to eq. (4) and of the Scree test [36] as described before. Fig. 4(a) shows the total

variance explained (TVE) vs. the principal component number for the three energy ranges

(A), (B) and (C). For better visibility, the inset is a plot of the same data, however, restricted

to the first 9 PCs. For (A) and (B), the first 3 PCs explain about 93% of the total variance, for

(C) about 98%. For (A) and (C), the TVE increases steeply between the first 3 PCs, whereas

for j > 3 the increase is weaker. In contrast, in the energy range (B) the TVE shows no obvious

steep increase for . The TVE increases gradually over the entire PC number range.

Hence, seem to be sufficient to describe the data in the energy ranges (A) and (C),

whereas in the energy range (B) it is more difficult to decide how many PCs should be taken

into account. Further information is gained from the Scree test [36] which is shown in Fig.

4(b). Here, the Eigenvalues (eq. (4)) are plotted against the principal component number.

The data curves coincide for . For the energy ranges (A) and (C) an obvious kink is
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observed at j = 3, in accordance with the TVE plot. For the energy range (B), the kink is found

at j = 2.

According to the Scree test criterion the first three PCs should therefore be enough to fully

describe the PBCO PEEM results in the energy ranges (A) and (C). For energy range (B) one

may restrict the PCs to the first two. However, we will later see in Fig. 5 that PC 3 indeed

contains considerable structural information also in the energy range (B); therefore we will

discuss in the following the loading intensities in Fig. 3 up to a maximum number of three for

all three energy ranges (A) to (C).

3.1. Loading intensities

3.1.1. (A) O K edge: 525 eV – 550 eV

The loading intensity of PC 1 (Fig. 3(A)) resembles the mean spectrum (black curve in Fig.

1(a)). Strong peak signals are observed for the loading intensities of PC 2 and 3 at 528.8 and

530.2 eV: The loading intensity of PC 2 accounts for a correlated reduction of both peaks,

which would correspond to a reduction of Co bound oxygen or a decrease in overall

covalency [26]. The loading intensity of PC 3 in turn accounts for an uncorrelated sole

increase of the peak at 528.8 eV which can be attributed to the electron holes on the CoO6

manifold [20]. For higher energies between 533 and 550 eV there seems to be a slight

contribution of the loading intensity of PC 2 and 3 to the broad peaks around 536 and 542

eV, corresponding to the Ba/Pr4d O2p hybridized states; however, the contribution is only

slightly above the error limit. The local spectral variations seem therefore to be dominated

by variations in the oxygen and states.
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3.1.2. (B) Co L and Ba M edge: 775 eV – 815 eV

The loading intensity of PC 1 reflects the typical spectrum for Co Ba (Fig. 1(b)), whereas PC 2

and 3 have only small contributions to the raw spectra. Nevertheless, the loading intensities

of PC 2 and PC 3 have positive bumps at the and levels. Simultaneously,

the loading intensities of PC 2 and PC 3 reveal a slight decrease of the and the

signal, respectively. That is, the spectral variations seem to be attributed to a

change in the Co Ba peak ratio and, hence, a change in the relative concentration of both

elements.

3.1.3. (C) Pr M edge: 920 eV – 960 eV

The loading intensity of PC 1 as shown in Fig. 3(c) reflects the typical spectrum of

praseodymium (Fig. 1(c)). PC 2 makes a contribution to the peak intensity at 929.4 eV. The

loading intensity of PC 3 is hardly above the noise limit, however, it appears to be caused by

a peak shift of the peak at 929.4 eV.

3.2. Loading intensity maps

In Fig.5, we map the loading intensities as obtained from specific image pixels using eq. (5).

The results for the first three PCs are shown in column 1 to 3. The last column in Fig. 5 shows

the residual images as obtained by mapping loading intensities higher than PC 3. The

residual images have no apparent remaining structure and are dominated by noise; thereby

corroborating that PC 1 to PC 3 are sufficient to fully describe the PEEM data.

100% positive loading intensity in the images corresponds to 1, and 100% negative loading

intensity to 1. Negative values originate from negative entries in the score matrix . For

improved visibility, the loading images in Fig. 5 are contrast enhanced such that the
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maximum/ minimum intensity values are displayed as white/black. The real numbers of the

maximum/ minimum values are denoted together with the scale bars at each loading image.

The photon energies are indicated in the left hand side of the graphics.

For the energy range (B) it becomes obvious that PC 3 contains a non negligible amount of

structural information. Simultaneously, the residual image containing PCs with is

almost without any structure. Although the interpretation of the TVE and the Scree plot in

Fig. 4 was not unambiguous, we can finally conclude from Fig. 5 that the first three PCs are

required and sufficient to describe the relevant variances in the raw PEEM data in the energy

ranges (A), (B) and (C). In the following paragraphs, we therefore discuss the mapping

images for the different energy ranges (A) to (C) based on PC 1 – PC 3:

3.2.1. (A): O K edge: 525 eV – 550 eV

At 528.8 eV, the loading intensity maps of PC 2 and PC 3 are similar to the raw PEEM image

at this energy: high and low intensity in the original PEEM image corresponds to positive,

respectively negative loading intensity. The loading intensity map of PC 1, the principal

component with the largest eigenvalue, corresponds to a third domain whose existence is

not obvious in the raw PEEM image: This domain is a thin region separating the two intensity

domains as observed for PC 2 and PC 3. At 530.2 eV, the loading intensity maps of PC 1 and

PC 2 show a domain structure similar to that at 528.8 eV. The loading intensity map of PC 3,

however, is reversed: low intensity domains at 530.2 eV correspond to high intensity areas

at 528.8 eV and vice versa.

3.2.2. (B): Co L and Ba M edge: 775 eV – 815 eV

For PC 1, the loading intensity map for at 780.2 eV is – safe for differences in noise

similar to that of at 784.0 eV. High and low intensity areas coincide. For PC 2 and
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3 on the other hand, loading intensities for at 780.2 eV are high where the loading

intensities for at 784.0 eV are low, and vice versa. The inversed contributions of

PC 1 and PC 2,3 to the intensity maps explains the almost structure free PEEM image at

780.2 eV (Fig. 1). Furthermore, they seem to indicate that high cobalt contribution is found

where the barium contribution is reduced and vice versa.

In contrast to energy range (A), we observe only two domains in the Co Ba energy range (B).

No third domain as found for (A) with PC 1 exists for (B). The domain structure in (B) for

PC 1, 2 and 3, however, is similar to what is found in (A) for PC 2 and PC 3. While the domain

borders seem to be less sharp in (B) compared to (A), the domains in (B) obviously coincide

with the high and low intensity loading areas of PC 2 and PC 3 in the energy range (A): at

528.8 eV the loading intensity of PC 2 and 3 is high where the loading intensity of PC 2 and 3

at 784.0 eV is high and the loading intensity of PC 2 and 3 at 780.2 eV is low (and vice versa).

3.2.3. (C): Pr M edge: 920 eV – 960 eV

For the Pr energy range, high intensity loading areas of PC 1 correspond to the high intensity

domains in the raw PEEM image (Fig. 1). The loading intensities of PC 2 and PC 3 are close to

the noise level. Still, the domain structure is visible, in particular in the loading intensity map

of PC 3. Here, large negative loading intensities of PC 3 coincide with low intensity domains

in the original PEEM image. Similar to the Co Ba energy range (B), no third domain is found

for the energy range (C). The contrast in the loading map PC 1 in (C) is inversed compared to

(B) indicating that domains with enhanced Ba content have reduced Pr concentration and

vice versa.
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3.3. Spectral decomposition for the different loading intensity domains

In order to determine the mean spectra in the various loading intensity domains in Fig. 3, we

use the orthogonal non negative matrix factorization (ortho NMF) as described in Section

2.3. Since energy range (A) reveals all three domains (Fig. 5) we use the data from (A) as an

input. We chose c=3 for the ortho NMF analysis. The result of the ortho NMF is presented in

Fig. 6: Fig. 6(a) shows the raw PEEM image of PBCO at photon energy 528.8 eV. In Fig. 6(b)

white (I), black (II) and gray (III) colored areas indicate the cluster groups as obtained by the

ortho NMF analysis. Pixels of the same color have spectral intensities with similar Euclidian

distance. Obviously, the areas as found by ortho NMF assuming 3 cluster groups coincide

perfectly with the domains observed in the loading intensity maps of PC 1, 2 and 3 as

determined by PCA in energy range (A) (Fig. 5): the black cluster group corresponds to high

intensity areas in the mapping image of PC 1 at 528.8 eV; the white and gray cluster to high ,

respectively, low intensity areas in the mapping images of PC 2 and PC 3 at this energy.

Fig. 6(c) is a plot of the mean spectra determined as an average over all raw spectra in the

white (I), black (II) and gray (III) colored areas indicated in (b). Obviously, the white (I), black

(II) and gray (III) colored domains differ substantially in the spectra: white areas have a

prominent peak, negligible and signals and a low peak. Gray

domains have a strongly reduced peak, considerable and contributions

and an intermediate intensity. The black areas show intermediate , and

peaks and the highest intensity.

The final average spectra in the three domains shown in Fig. 6(c) indicate that PBCO is best

described by assuming a phase separation between different chemical oxidation states,

element concentrations and stoichiometry. Gray areas (II) have a lower Ba to Co ratio than
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white areas (I). Black areas (II) have an intermediate Ba to Co ratio, an intermediate O

peak height, but maximum Pr concentration. A large Ba to Co ratio is correlated with a low

Pr concentration and maximum O peak. The maximum cobalt concentration with respect

to Ba is associated with the lowest O peak. These observations are well compatible with

the rudimentary decomposition reaction as shown in eq. (1), albeit it appears that the

decomposition is not a complete demixing of Ba and Pr, i.e. there is still some solubility of

either A site cation in the other lattice.

Apparently, neither a simple A site decomposition of the perovskite as observed in bulk

counterparts nor a precipitation of a secondary phase can describe the PCA results well: it

appears that a residual parent phase with a small tolerance of Pr/Ba ratio is still present,

whereas the decomposition products do exhibit such a phase breadth. Granted, this might

be to a non complete conversion of the reaction, however these thermodynamic details are,

as stated above, the scope of a subsequent work.

In Fig. 7, we present reconstructed images according to eq. (5) (denoted as “PCA”) where we

restricted the scores and loadings to the relevant first three PC indices . We

show the PCA images at the energies of distinct core level peaks. PCA images reproduce the

raw PEEM data (denoted as “PEEM”); however, noise is reduced, resolution is improved and

local intensity can be unambiguously attributed to specific spectral features, thereby

providing spatially resolved chemical information. From Fig. 7 one can separate the various

spectral contributions to the image contrast in the raw PEEM image for distinct photon

energies: Areas where is large have reduced and and enhanced

and contribution. The blurred contrast of the PEEM image at 530.2 eV is

unmasked by PCA as high O signals at the rims of the high intensity domains. The
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uncorrelated accumulation of at the rims of high intensity domains can be detected

only in the PCA images. Finally, areas with the highest Pr concentration correspond to areas

with lower / and / ratio.

4. Discussion

As mentioned in the beginning of this article, the interpretation of the spectroscopic

information with regard to the actual surface defect chemistry of PBCO is beyond the scope

of the paper and will be the focus of a future publication. Here, we want to emphasize the

strength of the PCA method since we believe that multivariate tools have not yet received

the deserved attention for the analysis of spectromicroscopic PEEM data.

The major strength of PCA when applied to PEEM images is that data is analyzed while being

fully detached from researchers’ pre assumptions about the possible outcome of the

experiment. As a main consequence, the scientific outcome does not suffer from

unintentional artificial input and data manipulation. As demonstrated nicely in this work, the

identification of a third domain revealed in the first principal component PC 1 for the oxygen

K edge (A) (Fig. 5) would hardly have been possible without PCA. The raw PEEM data merely

shows two obvious domains and the third domain camouflages as an intermediate contrast

in the border region between those domains. An intermediate contrast in raw

spectromicroscopic images; however, will be most probably interpreted as a gradient in gray

levels between low and high intensity areas rather than as a real third chemical domain.

In addition, PCA is capable of identifying correlated and uncorrelated variances in the data.

This information can provide real physical and chemical information since one may be able

to identify correlated and uncorrelated changes in oxidation states. This is demonstrated in

Fig. 3 in the data for the oxygen K edge (A). The loading intensity of PC 2 corresponds to a

correlated change of and . However, the loading intensity of PC 3 shows that there is
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an additional contribution to which is not correlated with changes in . This becomes

obvious also from the mapping images in Fig. 7. Here, the uncorrelated loading intensity

is localized in the rim regions of high intensity areas. The uncorrelated change of can

be easily interpreted in the framework of the defect chemistry here: a demixing of divalent

Ba and trivalent Pr impacts the overall hole concentration, which is measured by the

electron count [25]. The correlated change of and signals – a measure of the number

of empty / hybrid orbitals – shows the concomitant change of covalency with oxidation

state [25]. What is most interesting, though, is the fact that these two effects are linearly

independent, as the PCA shows, leading to the interpretation that the decomposition

products do not simply act as the end members of the Pr1 xBaxCoO3 solid solution series. This

is crucial information not provided easily without multivariate techniques and may be

missed if one embarks on analysis with a simple decomposition in mind.

As an extra which may not be underestimated though, chemical information is achieved with

an improved signal to noise ratio and with spatial resolution. For instance in Fig. 7 in the

energy range (B) at 780.2 and 794.6 eV (corresponding to and ), raw

PEEM data is hardly above the noise level. After PCA, the domains are clearly identified and

obviously correlated with lower barium intensity. This is chemical information which might

have been easily missed without PCA.

Finally, the PCA evaluation is systematic and fast and can handle large spectroscopic image

stacks which can be quite tedious to analyze manually. This is an advantage which one

should not belittle. Time consuming, manual evaluation procedures may lead to researchers’

subliminal self restrictions in data acquisition and evaluation and, therefore, in unintentional

reduction of statistical data base and precision and relevance of scientific outcome.
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One should emphasize though that care has to be taken when interpreting loading

intensities of principal components. The most critical researcher’s decision is how many

principal components have to be taken into account. Although methods such as the Scree

test may help, there is still some room for interpretation. Therefore, evaluation of

spectromicroscopic images using PCA may be fast, interpretation of the results may still be

the bottle neck on the way to publication of reasonable results.

Finally we address the question why we did not use the ortho NMF method to determine

the different domains and their spectral differences in the first place. Application of ortho

NMF requires assumptions on the algorithms used, the starting values and the convergence

criteria of the iterations which may be manifold [40]. Hence, great care has to be taken to

avoid artificial results. The advantage of the ortho NMF vs. PCA is that the former yields

positive basis vectors which appear more appropriate for physical and chemical problems.

Furthermore, the inherent clustering property [41] is an interesting tool to analyze phase

separation behavior. As mentioned before, however, the clustering tool requires quite a

number of pre assumption, in particular, the number of cluster groups to be found. In the

case of our data on PBCO, the raw PEEM data apparently display merely 2 different domains.

Assuming 2 cluster groups for an ortho NMF may therefore be the obvious decision and the

ortho NMF would yield cluster images similar to the loading maps of PC 2 and PC 3 in Fig. 5

at 528 eV. As a consequence, one would be tempted to accept the finding of two different

domains and one would not detect the third phase hidden in the raw PEEM images which is

described by PC 1. In contrast, PCA revealed the camouflaged third phase without any

further input or pre assumptions.
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5. Summary

In this paper we demonstrated the strength of multivariate techniques such as principal

component analysis in evaluating spectromicroscopic images. We showed that even in the

case of raw data with very low signal to noise ratio, PCA may safely yield low noise

spectroscopic data without any data pre processing or any influence by pre assumptions on

the scientific outcome. PCA is fast and makes large statistical data sets easily accessible.

PCA may detect unexpected features that are not obvious from the raw spectromicroscopic

images and might therefore lead to a far deeper understanding of the systems under

investigation. Here, we demonstrated that PBCO separates into three phases upon

prolonged annealing. Two of the phases are visible in the raw PEEM images. The third phase,

however, was revealed by PCA without neither additional pre assumptions nor pre

processing of the raw data.

Interpretation of PCA results must be performed with due care though, since the result for

the different core levels might be as complex as the sample under investigation. We hope

that we nevertheless convinced more scientists from the spectromicroscopic community

that the application of multivariate methods to the data is worth the effort.
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Figure Captions:

Fig. 1: Mean XAS spectra as obtained as an average over all pixels in the raw PEEM images

for three energy regimes (solid black lines): (a) 526.0 to 550.0 eV, corresponding to the

oxygen K edge; (b) 772.0 to 809.0 eV, corresponding to the cobalt L3,2 and barium M5,4

edges and (c) 920.0 to 960.0 eV, corresponding to the praseodymium M5,4 edges of PBCO.

As an example for deviations of local spectra from the mean, in (a) strongly deviating spectra

as measured at two distinct pixel positions are plotted as dotted gray and dark gray curves.

Similar deviations are found also for the other two energy ranges but are not shown in (b),

(c). In (d) we show the PBCO sample after 12 h annealing. The images are pixels

sections of pixels raw PEEM images measured at the indicated

energies. The white circle/cross in the left hand image indicates the positions where the

light /dark gray curves in (a) have been measured.

Fig. 2: Graphical illustration of how spectral information is deduced from raw

spectromicroscopic images with intensity values in the image matrix with entries.

(a) Raw spectromicroscopic data is stored in an image stack with levels where each image

level is recorded at a distinct photon energy . The spectral information is obtained by

plotting the intensity values at individual image pixels vs. energy . (b) For PCA, the

spectral information is written in a matrix with k rows and N columns; N = m n is the total

number of pixels in a spectromicroscopic image of the stack of size k.
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Fig. 3: Loading intensities for the first 5 principal components (PC) for the energy ranges (A)

to (C). The loading intensity of PC 1 resembles the measured mean spectrum as displayed in

Fig. 1. Loading intensities of higher PCs indicate deviations from the mean spectrum.

Fig. 4: (a) Total variance explained (TVE) vs. the principal component number for the energy

ranges (A), (B) and (C) as dashed, solid and dot dashed curves, respectively. The inset shows

the same data restricted to PCs up to 9 (A: dashed line with light gray circles; B: solid line

with dark gray triangles; C: white squares with dot dashed line). (b) Eigenvalues of the

covariance matrix of (eq. (2)) versus the principal component number j for (Scree

test [36]). Data is plotted using the same notation as in the inset of (a). Observations of kinks

in the data curves indicate an upper limit of the number of relevant PCs to describe the data.

See Section 3 for further discussion.

Fig. 5: Loading intensity mapping images for PC 1, 2 and 3 calculated according to eq. (5).

Images are calculated using the FoV of the pixels raw PEEM images. Here, merely

pixels ( ) sections are displayed. The mapping images are contrast

enhanced to maximum contrast between black/white. Minimum/maximum loading

intensities as found in the mapping images are denoted together with the scale bars at the

image side. 100% positive/ negative loading corresponds to values +1, respectively 1. The

last column shows residual images, i.e. mapping images using principal component numbers

higher than 3. The residual images are dominated by noise.
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Fig. 6: (a) Raw PEEM image section (3.2 µm × 3.2 µm) of PBCO at photon energy 528.8 eV.

(b) Cluster group image as obtained by an ortho NMF analysis (see 2.3) showing three

different domains I (white), II (black) and III (gray). (c) Average of raw spectral PEEM data.

Spectra related to white, black and gray colored areas are denoted I, II and III, respectively.

Fig. 7: Reconstruction of PEEM image data at distinct energies for (A) the oxygen K edge, (B)

the cobalt L and barium M edge, and (C) the praseodymium M edge according to eq. (4)

using PC 1, 2 and 3 (indicated as “PCA”, surface area 3.2 µm × 3.2 µm). Note that the PCA

images are similar to the raw PEEM images (indicated as “PEEM”); however, noise is

reduced, resolution is improved and local intensity can be unambiguously attributed to

specific core levels, thereby providing locally resolved chemical information.
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